Press releases
Media Kit
Researchers' Directory
Logos and photos
The IRCM > Médias > Communiqués de presse > Communiqués de presse
Home > Media > Press releases > Press releases
Home > Media > Press releases > Press releases
Press releases
An important study for Parkinson’s disease

Thursday, December 11, 2014

IRCM researchers uncover a mechanism regulating dopamine levels in the brain

Researchers in Montréal led by Jacques Drouin, D.Sc., uncovered a mechanism regulating dopamine levels in the brain by working on a mouse model of late onset Parkinson’s disease. The study, conducted in collaboration with Dr. Rory A. Fisher from the Department of Pharmacology at the University of Iowa Carver College of Medicine, is published online today by the scientific journal PLoS Genetics.

Using gene expression profiling, a method to measure the activity of thousands of genes, researchers investigated dopaminergic neurons in the midbrain, which are nerve cells that use dopamine to send signals to other nerve cells. These neurons are known to degenerate in Parkinson’s disease.

“We identified the Rgs6 gene for its restricted expression in dopaminergic neurons,” explains Dr. Drouin, Director of the Molecular Genetics laboratory at the IRCM. “We had previously shown that this gene is itself controlled by a transcription factor called Pitx3, which plays an important role in the survival of these neurons.”

“Through our study, we discovered that a defective Rgs6 gene causes the death of these neurons,” adds Dr. Drouin. “More specifically, we found that when we remove the Rgs6 gene, this relieves a brake against excessive dopaminergic signalling. As a result, excess free dopamine accumulation causes cellular stress, which, in turn, causes the neurons to die. Our work thus indicates that Rgs6 could be a new target for the development of drugs against Parkinson’s disease.”

According to Parkinson Society Canada, nearly 100,000 Canadians have Parkinson’s disease. This progressive neurodegenerative disease primarily affects voluntary, controlled movement. It results from the loss of cells responsible for producing dopamine, which acts as a messenger between brain cells that control the body’s movements.
This research was supported by the Canadian Institutes of Health Research (CIHR) and by the Parkinson Society Canada. For more information on this discovery, please refer to the article summary published online by PLoS Genetics:

About Jacques Drouin
Jacques Drouin obtained his Doctor of Science in Physiology from Université Laval. He is IRCM Research Professor and Director of the Molecular Genetics research unit. Dr. Drouin is Research Professor in the Department of Biochemistry at the Université de Montréal. He is also associate member of the Department of Medicine (Division of Experimental Medicine), adjunct professor of the Department of Anatomy and Cell Biology, and adjunct member of the Department of Biochemistry at McGill University. In addition, he is an elected member of the Academy of Sciences of the Royal Society of Canada. For more information, visit

About the IRCM
The IRCM ( is a renowned biomedical research institute located in the heart of Montréal’s university district. Founded in 1967, it is currently comprised of 35 research units and four specialized research clinics (cholesterol, cystic fibrosis, diabetes and obesity, hypertension). The IRCM is affiliated with the Université de Montréal, and the IRCM Clinic is associated to the Centre hospitalier de l’Université de Montréal (CHUM). It also maintains a long-standing association with McGill University. The IRCM is funded by the Quebec ministry of Economy, Innovation and Export Trade (Ministère de l’Économie, de l’Innovation et des Exportations).

- 30 -

Download the news release as a PDF document

For more information and to schedule an interview with Dr. Drouin, please contact:

Julie Langelier, Communications Officer (IRCM) | (514) 987-5555

Lucette Thériault, Communications Director (IRCM) | (514) 987-5535

Bookmark and Share
All rights reserved: IRCM 2011_110 avenue des Pins Ouest - Montréal (Québec) H2W 1R7 – Canada